Assessment of Marine Sand Resources and Economic Heavy Minerals on Virginia's Outer Continental Shelf

Jessi S Blanchette Billy Lassetter Rick Berquist

Hurricane Sandy

- Jan 2013 BOEM received \$13.6 million for coastal resiliency studies and sand resource evaluation from Federal Disaster Relief Appropriations Act
- April 2014 13 cooperative agreements with state geological surveys
- 2015 BOEM awarded \$5 million contract to CB&I to conduct Atlantic Sand Assessment Project,
 3-8 nautical mile strip from Maine to Florida.

Purpose of Study

- Determine the quality and volume of sand resources in 2 study areas
 - Wallops Island
 - Sandbridge Beach
- Heavy Mineral Analysis
- Synthesize existing and newly available offshore Geodata

Project Location area 3-8 nautical miles offshore

What is Beach Quality Sand?

Beach Quality Sand for VA

- Wallops Island, VA
 - Sand: poorly or well sorted
 - containing no more than
 10% fines passing through a
 #200 sieve (0.074 mm)

- Sandbridge, VA
 - 50% greater than .2 mm,
 preference is .25 mm
 - Color does not matter
- Client specification
 - Low shell content
 - Low rock content
 - Low iron-oxide

Beach Nourishment

https://www.nasa.gov/centers/wallops/news/beach.html

How do we find beach-quality sand?

 Offshore geologic correlation and interpretation (where there is a sufficient amount of data)

Ancient Beach Sands

 Iluka Resources has mined Pliocene beach sands since early 1990s; estimated \$2.5 billion in zircon and ilmenite

Mineral Exploration Offshore

Minerals

Ilmenite - FeTiO₃
Leucoxene - alteration product of FeTiO₃
Rutile - TiO₂
Zircon - ZrSiO₄
(minor U, Th, Pb, Hf, Y/REE)

Garnar, 1978 Iluka Resources Old Hickory

(45%) (54-68%)

(5%) (1-2%)

(2%) (1-3%)

(5%) (15-21%)

Monazite - (Ce,La,Nd,Y,Th,U)PO₄ Staurolite - (Fe,Mg,Zn)₂AL₉Si₄O₂₃(OH) Sillimanite group minerals - Al₂SiO₅ (1%)

(20%)

(7%)

THM in many samples exceed the 2% economic threshold

- Red > 10%
- Yellow > 5% < 10%</p>
- Green >2% < 5%

Spiraling Heavy Mineral Concentrate

Geologic Framework

Figure 15 from "Atlantic Coastal and Inner Shelf". The Geology of Virginia

- Update our understanding of the Quaternary-Neogene geologic history of Virginia's Continental Shelf (VA-NC state line to Smith Island Shoals)
- Use Zircon to determine sediment provenance
- Examine OCS heavy mineral composition differences that may result in these successive paleochannels

For More information

Jessi Blanchette – jessi.blanchette@dmme.virginia.gov Billy Lassetter – william.lassetter@dmme.virginia.gov

Web site: https://dmme.virginia.gov/

Acknowledgements:

* Thank you to Patti Burton, Carmi Thompson, Eleanor Worthington, Ben Weinmann, and Lydia for assistance with spiraling.

Work Cited

- * Berquist, C.R., Hobbs, C.H. 1986. Assessment of Economic Heavy Minerals of the Virginia Inner Continental Shelf. Department of Geology and Mineral Resources. Open File Report 1287.
- * Luepke, Gretchen. 1990. Economic heavy minerals in sediments from an offshore area east of Cape Charles, Virginia. U.S. Geological Survey. Open-file Report 90-451.
- * Pendelton, E., Brothers, L., Thieler, R., Danforth, W., Parker, C. 2014. National Oceanic and Atmospheric Administration Hydrographic Survey Data Used in a U.S. Geological Survey Regional Geologic Framework Study Along the Delmarva Peninsula. US Department of Interior. US Geological Survey. Open-File Report 1262.
- * Hobbs, Carl H., Krantz, David E., Wikel, Geoffrey L. "Atlantic Coastal and Inner Shelf." *The Geology of Virginia.* Martinsville, VA. Virginia Museum of Natural History, 2016. 341-380.